
/)9'32..-----
J

NASA Technica!_Memorand6m] 060_92 ............. //_/lT/_J

p,/7
!

2_ ...... --Z_..-" "7t _" : - ..... _ - -2_-fZ_-. 5. - .- SS-_I :_-l-L__i I-. . ?__.-- -" L1 l___._-%_i.... __ . --_-_ - --_--'_- -

Real-Time Tran smissionof Digital Video
Using Variable-Length Coding

Thomas P. Bizon, Mary Jo Shalkhauser,andWayfie A. Whyte, Jr-=
Lewis Research Center ::-=:=._= ::--:.-_= --==: _ :_ __-._ _ : _-_ :- i, -:=-_ _:_-_ _: _:--. -

Cleveland, Ohio - :=± ± = : :=: ::::_ =i: ::. :=== = = .....::.:._:=_ ........ :=
......... _ _=" ...... " "---S --'-" 7 ¢ .... _:----:f-- : :--_-- ..... --_' ": : -- _ -- -

Prepared forthe _ .......... ......... :: _:- _ : :

Data Compression_Conference (DCC '93)

_::: : _::__: sponsoredby the Institu_teofElecti:icaIand_ Ele-ctronic_s Engiheers i-:: :___ i :i:-:_ i?
Snowbird, Utah, March 30--April 1,--I993

_ __--_-__: :_- _ 2 : : :::_: :_ __. Z_2 ............. _____? ................................................

fll/ A • 1,o

(NAS A-TM- i060q2) REAL-TIME N93-22483
TRANSMISSION GF DIGITAL VIDEO USING

(NASA)
Uncl as

G3/32 0151404





Real-Time Transmission of Digital Video
Using Variable-Length Coding

Thomas P. Bizon, Mary Jo Shalkhauser, and Wayne A. Whyte, Jr.
National Aeronautics and Space Administration

..... Lewis Research Center

Cleveland, OH 44135

1.0 Introduction

Huffman coding is a variable-length Iossless compression technique where data with a

high probability of occurrence is represented with short codewords, while "not-so-likely"
data is assigned longer codewordso Compression is achieved when the high-probability
levels occur so frequently that their benefit outweighs any penalty paid when a less likely

input occurs. One instance where Huffman coding is extremely effective occurs when
data is highly predictable and differential coding can be applied (as with a digital video

signal). For that reason, it is desirable to apply this compression technique to digital video
transmission; however, special care must be taken in order to implement a communication

protocol utilizing Huffman coding.

This paper addresses several of the issues relating to the real-time transmission of

Huffman-coded digital video over a constant-rate serial channel. Topics discussed include
data rate conversion (from variable to a fixed rate), efficient data buffering, channel

coding, recovery from communication errors, decoder synchronization, and decoder
architectures. A description of the hardware developed to execute Huffman coding and
serial transmission is also included. Although this paper focuses on matters relating to

Huffman-coded digital video, the techniques discussed can easily be generalized for a

variety of applications which require transmission of variable-length data.

2.0 SummarY of CQmpression Algorithm

A compression algorithm was de'veloped at NASA Lewis Research Center to process 8-bit
samples of the composite color NTSC 1 video signal taken at four times the color

subcarrier frequency. After compression, the amount of digital data required for video
transmission is reduced by over 75% with virtually no visible degradation in picture
quality. The algorithm is based on differential pulse code modulation (DPCM), but

additionally utilizes a non-uniform quantizer, non-adaptive predictor, and multi-level
Huffman coder to reduce the data rate substantially below that achievable with

conventional DPCM. A block diagram of the algorithm can be found in figure 1.

1) National Television SystePrB Committee



2

The differential (DPCM) portion of this algorithm performs all necessary operations to

make a prediction of the incoming pixel and produce a difference value. This difference
is then grouped into one of thirteen quantization levels (QL) and passed to the Huffman
coder. The coder contains thirteen individual Huffman trees (one for each quantization

level), with each tree consisting of thirteen variable-length codewords. This multi-level
structure facilitates dynamic adaptation of the QL probabilities based on the previous

input. For example, when an input of QL 4 is received, the coder will select Huffman tree

4 for the next input. Huffman tree 4 represents the probability of occurrence for all QL
values given that the previous input was QL 4. In this way, the multi-level Huffman coder

is self-optimizing; therefore, higher compression ratios are achieved than those obtainable
with a single-tree coder 2. Once Huffman coding is completed, the data is fully

compressed and ready for serial transmission. A complete description of the algorithm
may be found in reference [1] or [2].

DGTIZED

REGONS_ED

DIOT_-ED
_OEO OUT

COMPRESS�ON AL GOR/'/'HM BLOCK D/AGRAM

I won
I
I

] PlX +

I
I
= OV
! 1,
I

m
!

i
i

J

RP

i

;

i
i

CHANNEL
!

! DECODER ,,_-.,-.,,_ i
IIIB;,_OIi |

i _' i
i + i

" i !

! _- , ]
; !
i ' !

I I

Figure ]

2) Simulation results hav= demonstrated a one-half bit per pixel improvement in compression performance for the

multi-level Huffmen coder over a single-tree coder.



3

3.0 Encoder Implementation Issues

3.1 Data Rate Conversion

Because of the variable-length representation of information, the output data rate of the
Huffman coder varies with each quantization level input. Since the data must be
transmitted over a constant-rate communications channel, it is necessary to incorporate

a buffer to smooth these rate variations and create a constant-rate data stream. This

conversion is most easily accomplished using a first-in/first-out memory (FIFO) to absorb
the differences between data rates. Depending on video content, however, differences
between the rates can accumulate, and there is a danger of overflowing or underfiowing
the FIFO. For this reason, it is necessary to include additional protection against FIFO

overflow and underflow. Since the channel rate is fixed, the mechanism used must

adaptively reduce or increase the amount of data entering the FIFO. To prevent overflow,
reduction of input data is accomplished using an alternate (coarser) quantization scheme

generated by regrouping the original thirteen levels into five. This scheme fosters data

reduction using the most probable (shortest) Huffman codes, while still maintaining
reasonable picture quality. To prevent underflow, augmentation of input data is done by

eliminating the compression effect of the Huff man coder and transmitting the quantization
level directly (at a rate of four bits per QL). In this case, picture quality remains the same
as for the normal algorithm since no quantization information is changed. To determine

the processing mode used (normal, data reduction, or data augmentation), the FIFO fill-
level is evaluated at the beginning of each video line, and the mode is selected based on

preset thresholds.

An intelligent data rate buffer was developed to convert the variable-rate output of the
Huffman coder to a constant-rate input for the serial transmission channel. Details of the

implementation can be found in section 5.2.

3.2 Efficient Data Buffering

As described above, it is necessary to incorporate a data rate buffer to convert the

variable-rate output of the Huffman coder to a constant-rate input for the serial
transmission channel. Due to the variable-length representation of the data, however, it

is impossible to efficiently use the buffer memory without some additional pre-storage

processing. One simple operation to facilitate efficient storage is to pack (group) the
variable-length Huffman codes into words of constant-length which can be stored utilizing
the full width of the memory. Efficient data buffering is achieved because only valid data
(and no overhead) is stored in the memory and all available memory width is used. A

method was developed to perform the data packing, and a sample of the packer algorithm

(using a word length of 16-bits) is shown in figure 2.

Referring to the figure, input to the data packer consists of a "Huffman Code" and the
"Code Length". Upon receipt of this input, the packer will transfer the code into a

constant-length word beginning at the first empty location. This location is easily derived



4

using the internal "Bits Filled" information. Once a word is completed (16 or more bits
are filled), that word is transferred to the data rate buffer, and construction of the

subsequent word begins. It is possible for a Huffman code to be split between two of the

constant-length words; however, system performance is not affected since the data will
be transmitted serially. The "Output Grouping" of the sample input sequence is shown

in the figure.

A data packing circuit was developed as part of the intelligent data rate buffer described

above. Details of the implementation can be found in section 5.2.

Huffman Code

0001

01

001

000001

00000001

1001

00000000001

00O01

Sample Sequence for Data Packer

Code LenBth

4

6

Bits Filled

10

8

11 ]2

Word Done

1

0000001 7 12 0

XXXXXXXXXXX XX 3 1

Output Groupln_I

7o 11 I s I ,o 7
I

3 of 7 I XX
llll

Note: Numbers represent the length of the Huffman code in bits.

Figure 2



5

4.0 Decoder Implementation Issues

4.1 Decoder Synchronization

The video decoder receives the serial data stream from the transmission channel and must

reverse the compression procedure performed by the video encoder to reconstruct the

video image. This requires that the decoder adapt decompression protocols to account
for changes in processing mode (normal, data reduction, or data augmentation) and DPCM
predictive techniques (see reference [1]). These changes occur exclusively at video line
boundaries; hence, the decoder needs only to derive this information from the serial data

stream for proper decompression.

Line boundaries are difficult to recognize, however, because the variable-length nature of
the Huffman codes results in a variable number of bits per video line. The line boundaries

can be distinguished after a complete line is processed by the Huffman decoder; however,
the decoding process is extremely vulnerable to bit-errors induced by the transmission
channel. When a bit-error occurs in a Huffman code, proper decoding is impossible and

the decoder can lose synchronization with correct codeword boundaries and, therefore,
with correct line boundaries.

To maintain synchronization at the video decoder, the video encoder inserts a unique
word at the beginning of each line and frame. The unique words were chosen to maintain
a reasonable level of overhead and hardware complexity, while minimizing the possibility

of unique word occurrences in the video data. Simulations were run using a variety of

still images to empirically choose the "best" unique words. The unique words are
immediately followed by two mode bits which allow the video decoder to properly decode
the line using the normal, data reduction, or data augmentation mode. Additionally, the

unique words can be utilized by the video decoder for error detection and concealment
as described in the following section.

4.2 Channel Coding and Recovery from Communication Errors

One drawback to variable-length coding, such as Huffman coding, and to predictive
compression techniques, such as DPCM, is non-graceful degradation when bit-errors occur
on the transmission channel [3]. As described previously, bit-errors in Huffman-coded

data result in incorrectly decoded pixel values and possible loss of codeword
synchronization. These incorrect pixel values can then propagate through the video image

because future prediction values will be based upon erroneous prior values. The result

is poor reconstructed image quality.

Three different techniques can be applied to minimize the impact of channel errors on the

image quality. Forward error correction can be used to protect the transmitted data from
channel errors, windowing can be used to minimize false unique word detects, and line
substitution can be used for error concealment to reduce the propagation of errored pixels

through the video image.



6

Forward error correction (FEC) can be used to protect any data set, including Huffman-
coded image data, from errors induced by a noisy transmission channel. An FEC encoder

adds redundant bits to the serial image data, and an FEC decoder uses those bits to

detect and correct bit-errors that occur within the data stream. For our application, a
block FEC codec was chosen over a convolutional codec because of the error correction

performance for minimal data overhead. In particular, a rate 239/255 Reed-Solomon
codec was used. Simulations show that this codec will reduce a 5 x 10 .6 bit-error-rate

(BER) channel to a 7.5 x 10 "_ BER channel (see table 1).

Channel Error Rate

Without Coding With Coding

1 x 10 .2 4.4 x 10 .5

1 x 10 s 3.1 x 10 13

1 x 10 .4 3.7x 10 .22

1 x 10 s 3.8x 10 31

5 x 10 .6 7.5 x 10 _

1 x 10 .8 < 10 .35

Table 1" FEC Simulation Results

While the use of this FEC codec can greatly reduce the probability of channel bit-errors,

it also has a few disadvantages. FEC coding adds redundancy to the compressed image
data, effectively nullifying some of the compression algorithm gains. The increased

redundancy also means that the channel data rate is increased. Another disadvantage is
the increased hardware complexity introduced by the FEC coding and decoding circuits.

When FEC coding is not desirable due to limited bandwidth availability or when the FEC
decoder fails to correct all channel errors, two additional techniques (described below) can

be used by the video decoder to limit the impact of the errors.

As discussed previously, unique words are utilized to maintain synchronization at both the
video line and frame boundaries. Although the unique words were chosen to minimize
their possibility of occurrence in the video data, simulation results have shown that even
the best unique words can sometimes occur randomly within the serial data stream. In
addition, bit-errors induced on the transmission channel can cause additional unexpected

occurrences of unique words throughout the video data. In order to reduce the incorrect

detection of these false unique words, windowing techniques can be applied that allow
unique word detects to occur only near their expected location in the data (i.e. after most
of a video line has been decoded).



In addition to decoder synchronization, the unique words can be used for error detection
and concealment. Due to the chosen sampling rate, there are 910 pixels per video line 3.
When errors occur in the Huffman-coded data, the number of decoded pixels per line can

vary; therefore, the unique word location, rather than the pixel count, is the determining
factor for line boundary location. Following a unique word detect, the Huffman decoder
begins decoding the serial data. If the next unique word occurs before or after 910 pixels
have been decoded, then an error has occurred somewhere on the line.

Because the video receiver must have exactly 910 pixels per line, the line lengths have

to be adjusted when an incorrectly decoded Huffman code results in a line that is longer

or shorter than 91 0 pixels. In addition, the line contains pixel errors. When the incorrect
line is used by the predictive circuits to reconstruct the video image, the errors will

propagate throughout the rest of the video frame and the resultant image quality will be
poor. An error concealment technique is used to adjust the line lengths to 910 pixels per
line and also to mask errors in the line.

When an errored line is detected by the unique word location, error concealment is

performed by substituting the most recent error-free line having the same subcarrier phase
characteristics as the current incorrect line. Although the substituted line is not likely to

be an exact match for the original line, it is likely to be very similar. The result is that

some (relatively small) error is introduced in the video reconstruction with the substitution;

however, the large adverse effects of decoding errors are masked.

_5.0 ImDlementation of Encoder Hardware

5.1 Huffman Coder

The Huffman coder performs all operations necessary to generate the variable-length

codes using the multi-level tree structure previously discussed. Since the probability tree
used at any given time is based only on the previous quantization level (QL), it is possible

to implement the complete multi-level coder using a single look-up table addressed by
both the current and previous QLs. The output of this look-up table is the corresponding
Huffman code and a length indicator denoting the number of bits used by that code. This
information is then transferred to the intelligent data rate buffer for efficient storage.

In addition to variable-length coding, the Huffman coder look-up table is used to
implement the data augmentation procedure and the unique word/mode bits insertion.

Both operations are accomplished by addressing "special" sections of the look-up table
at the appropriate times. The data augmentation section of the table contains "Huffman

codes" that are equal to the input quantization level---effectively eliminating the coding
process. The unique word/mode bits section of the table is subdivided into separate areas

3) 4 x 3.579545 Msamptes/sec x 63.56 uiec/line = 910 samples/line



8

containing line or frame unique words and different combinations of mode bits.
diagram of the complete Huffman coder circuit can be found in figure 3.

A block

HUF-MAN CODER

INtT

1

OL

:I LL-LEVEL

!OL/EOF: i e I d

PlX

t
CODE

Figure 3

Referring to the figure, input to and output from the look-up table is governed by the
Huffman coder controller and various multiplexers. The controller regulates access to the

appropriate section of the look-up table for unique word/mode bit insertion using control
signals from both the DPCM hardware ("EOL/EOField") and the data rate buffer ("fill-
level"). The controller was implemented as a state machine using a programmable logic

device (PLD). The multiplexers used implement the initialization and data augmentation

procedures of the compression algorithm. MUXl allows transmission of the incoming

pixel uncompressed (necessary for initialization of the algorithm), while MUX5 controls
addressing of the look-up table (for initialization and data augmentation). Because the

functions of these multiplexers are very similar to those of DPCM quantizer multiplexers,

most control signals can easily be derived from the quantizer controller. Additional MUX5
control to execute the data augmentation protocol is supplied by the "fill-level" signal
from the data rate buffer.

5.2 Intelligent Data Rate Buffer and Data Packer

The intelligent data rate buffer is used to compensate for differences between the
variable-rate Huffman coder output and the constant-rate serial channel. As discussed
previously, data rate buffering is accomplished using a FIF0 memory with additional

safeguard circuitry to prevent underflow or overflow of the FIF0. A block diagram of the

data rate buffer is shown in figure 4.



9

INTELLIGENT DATA RATE BUFFER AND DATA PACKER

HUFFMAN CODE

LENGTH

CONTROL

2

SERIAL CLOCK

I
!

!

t .....

DATA

PACKER

C_RL

LOGIC

FILL-LEVEL

PRO(]; FLAGS

,i

t CNTRL t CONTROL

I LOGICI

F ILL- LEVEL

SERIAL DATA

Figure 4

The central unit of the data rate buffer is, of course, the FIFO. For this application, the
FIFO chosen has an 18-bit data bus (only 16 bits are used), storage capacity of 8192

words, and both a programmable almost-empty flag and a programmable almost-full flag.
Small variations between the data rates of the Huffman encoder and the serial channel

will be absorbed with the FIFO; however, accumulated variations will require the

programmable flags to act as the protection (discussed previously) to prevent FIFO
underflow and overflow. These flags are each programmed to mark a fixed fill-level of

the FIFO and then polled at the beginning of each video line to select the processing mode
for that line as shown in table 2. The levels chosen for the almost-empty and almost-full

flags are 127 words (2032 bits) from empty and 2045 words (32720 bits) from full.
These levels were experimentally determined to prevent both FIFO underflow and

overflow (with significant margin) over a wide range of test images.

in order to perform the above initialization and operation procedures of the FIFO, it is
necessary to implement a FIFO input controller. Specific functions of this controller
consist of presetting the programmable flags, initiating data storage, polling the fill-level

of the FIFO, and selecting the processing mode. This controller was realized as a state
machine and implemented with programmable logic (part of the data packer discussed

below).

As described previously, it is important to pack (group) the variable-length data into
constant-length words to efficiently utilize the FIFO memory. This is accomplished using
the data packer, which receives the Huffman codes and generated packing information

and groups the codes into 16-bit words. The packing information consists of the bits



10

filled in a partial 16-bit word and a flag to indicate when the word is completed (see
example in section 3.0). It is generated using a four-bit adder to sum the length indicators
from the Huffman coder, with the carry output marking when a full word has been
constructed. As done in the Huffman coder, a multiplexer (governed by the FIFO input

controller) is used for initialization of the packing information.

Almost

Empty

Almost

Full
Processing

Mode

0 0 Normal

1 0 Data Augmentation

0 1 Data Reduction

0 = Signal not asser:ted, 1 = Signal asserted

Table 2: Operation of FIFO Underflow/Overflow Safeguard

The packer, itself, is equation-intensive; hence, it was necessary to implement this unit
in a Mega-PLD. The PLD chosen contains 84 pins, 128 flip-flops, and over 500 product

terms. Since this device is so large, the state machine previously discussed was also

implemented within the PLD.

Interfacing between the FIFO and serial channel is accomplished via a shift register, which
will convert 16-bit parallel data into a serial bit stream. Like before, control circuitry was

developed to supervise required operations, specifically to initiate FIFO recall and to derive
various control signals (for both the shift register and the FIFO) from the serial clock. As
with other control circuitry, the FIFO output controller was implemented as a state

machine in a PLD with some support logic.

6-0 Decoder Architectures

The Huffman decoder circuit receives serial data from the transmission channel or the FEC

decoder, detects line and frame unique words, reverses the Huffman coder operation, and
performs error detection and concealment. Two different approaches to the Huffman

decoder circuit, parallel decode and serial decode, have been investigated. Each of the

approaches has advantages and disadvantages; hence, the best approach is dependent
on the application. Both of the above decoder architectures are discussed in detail in the

following sections.



11

6.1 Parallel Huffman Decoder

In the parallel Huffman decoder approach, the serial data stream is converted to parallel
data and presented to a look-up table for Huffman decoding. The proposed parallel
Huffman decoder architecture (shown in figure 5) uses concepts similar to those used in

the Huffman coder/data packer circuits discussed in section 5.0.

PARALLEL HUFFMAN DECODER ARCHITECTURE

SERIAl.
OATA

I BT$

IUN PACKE R

f

I PIXEL AND LINE J_COUNTERS

TO [xOCM

RECONSTRUCTION

CIRCUIT

UNK_UE i
WORD i

AND
MODE
BITS

I:_TECT8

Ftgure 5

Huffman-coded serial data is received from the transmission channel or from the FEC

decoder. First, the unique words are detected for initialization purposes and for mode
selection. Then, the unique words and the mode bits are removed from the data stream.

The remaining data is stored in the rate buffer FIFO. Additional circuits are required to
maintain the line and frame boundaries and the mode information so that the video

decoder can remain aligned with the compressed data in the FIFO.

Data is read from the FIFO and loaded into the data unpacker, which performs the
function of a barrel shifter. At the uncompressed pixel rate, the data unpacker presents

an 1 1-bit word to the Huffman decoder look-up table (LUT). Since the maximum Huffman

code length is 1 1 bits in this application, the 1 1-bit word is guaranteed to contain at least
one Huffman code.

The 1 1-bit word is only part of the address bits in the Huffman decoder LUT. Additional

address bits are required because the multi-level Huffman codes are dependent on the

previous quantization level (QL); therefore, the decoded QL must be fed back to address
the look-up table. With the 1 1-bit word and the previous QL value as address bits, the



12

LUT outputs the correct QL value for the Huffman code and a code length value. This

code length is fed back to the data unpacker which shifts the data by that length and

outputs a new 1 1-bit word. To maintain at least 1 1 bits of valid data in the shift register
at all times, the data unpacker receives additional data from the FIFO as needed.

The major advantage of this parallel Huffman decoder approach is that the FIFO is small

and equal in size to the encoder FIFO because it stores the compressed data. Some
penalty is paid, however, in the circuit complexity of the data unpacker and the memory
size of the LUT. Another advantage is that the Huffman decoder LUT can operate at the
relatively slow pixel clock rate. A significant disadvantage of this approach appears when

bit-errors are possible in the system. As discussed previously, bit-errors in the serial data
stream will result in incorrectly decoded Huffman codes, subsequently resulting in loss of
codeword and line synchronization. If the line lengths are incorrect, the error concealment

techniques are virtually impossible to implement. In addition, when errors occur, the
actual time to decode a video line will vary. This will result in significant problems with

the video decompression circuits following the Huffman decoder.

The parallel Huffman decoder approach is straight-forward and memory-efficient, and is
recommended for applications in which channel transmission errors are not a factor.

6.2 Serial Huffman Decoder

As in the parallel decoder approach, the serial decoder (shown in figure 6) utilizes a LUT

for Huffman decoding. In this case, the LUT stores each of the Huffman code trees and
performs a tree search to decode each Huffman code. A pointer is initially set to the top
node of the tree. As each serial bit is received, the pointer branches down to the next
node of the tree. The direction of each branch depends on the value of the serial bit. The
Huffman code tree is traversed in this manner until a valid Huffman code has been
detected. When the end of a valid Huffman code is reached, the LUT outputs an end-of-

code flag and a quantization level. The next address is set to zero to move the pointer

to the top of the next tree. The quantization level (OL) is fed back as an address for the
LUT to select the proper Huffman code tree for decoding. To handle different processing
modes (normal, data reduction, or data augmentation), the mode bits are used as the

most significant address bits to the LUT. The Huffman decoder operation may be more

easily understood by examining the example in figure 7.

The serial Huffman decoder LUT is preceded by an 18-bit shift register. The serial output

of the shift register is fed directly to the Huffman decoder LUT, and the parallel output
is fed to line and frame unique word detect circuits and the mode decode circuit. Each

time a unique word is detected, the mode bits are tapped off to be used by the rest of the
decoder circuitry, and the Huffman decoder is disabled until all 18 bits are purged from

the shift register so that the unique words and mode information are not incorrectly

interpreted as Huffman data.



13

m
DATA

SERIAL HUFFMAN DECODER ARCHITECTURE

OECOOER LL_I. BUFFER

LOOK-UP FIFO /TABLE NEXT
,_DOREt_

TO BICM

Figure 6

START

SERIAL HUFFMAN DECODER EXAMPLE

ADDRESS BITS

QUANTlZATION
LEVEL

•--=- 1O01
1001
1001
1OO1
1001
1001
1OO1

1001

1001
1001
1001
1001
%)01
tOOl
tOOl
1001
1001
1O01
'1001
'1001
tOOl
'lOOt
IO01

PREVIOUS
OUANTIZATION

LEVEL

NEXT
ADDRESS

N
0011

0111
0111
1000
IOO0
1O01
1001
1010

1010
1011
1Oll

SERIAL NEXT
BIT ADDRESS

; ]11
0 IOO0
I 0000
0 I001

I 1011

0 0000

I 1111

0 0000

I (XXX)

0 0000

I 0000

t
RECEIVED BIT STREAM:

0000001

DATA BITS

END..-OF
COOE

0
0
0
1
0
1
0
t
0
1
0
1

0
1
0
1
0
0
1
t
t
1
1
1

QUANTIZATION
LEVEL

IOO1

100t

1OO1
1010
'lOOt
0110

1001
0101
1001
10tl
1001

0_ _ END
1001
tt00
1001
1001
1101
0Oll
1000
0111
0010
0001

Figure 7



14

The serial Huffman decoder architecture uses the location of the unique words and a pixel
counter to detect if a line contains an error. As each codeword is decoded, a pixel

counter is incremented to count the number of pixels per line. If a unique word window
is used, a window is opened toward the end of the current video line to begin looking for
the start of the next video line. If no errors occurred on the line, there will be exactly 910

pixels on that line. If there are errors, however, the Huffman decoder will most likely lose

synchronization with the Huffman codeword boundaries resulting in line lengths greater
than or less than 910 pixels.

To compensate for Huffman decoder errors, an error concealment circuit (ECC) follows
the Huffman decoder. When an errored line is detected, the ECC will replace that line

with the most recent line of similar content in order to adjust line length and mask error

effects. For this application, neighboring lines are similar in content, with each line having
the same phase relationship as the line two previous to it. The ECC (see figure 8)
consists of three interconnected FIFOs, each 910 words deep.

ERROR CONCEALMENT CIRCUIT

'-" r--]OATA : CURRENT LINE ECC FIFO 1)

1 UNE PREVIOUS ECC FIFO 2) I • OATA

2 UNES PREVIOUS ECC FIFO 3) _--I

Figure 8

The Huffman decoder output is loaded directly into the first ECC FIFO. If the current line
is error-free, the second ECC FIFO is loaded with the contents of the first ECC FIFO.

Otherwise, the second ECC FIFO is loaded with the contents of the error-free third ECC

FIFO. The output ECC FIFO 2 is sent to the remainder of the video decoder circuitry

which is responsible for rate buffering and reconstructing the video signal using predictive
techniques.

The major advantage of the serial Huffman decoder approach is its ability to detect and
conceal errors that occur within the Huffman-coded data. The rate buffer FIFO is larger,

however, because it does not store compressed data as with the parallel decoder

approach. Another advantage is that the decoding time for an errored line and a non-
errored line is the same. A disadvantage is that the LUT must operate at the relatively
high serial bit rate. The error detection and concealment circuits also increase the

hardware complexity.



15

The serial decoder architecture is recommended for applications in which channel errors

are likely to occur. The compression algorithm (described in section 2.0) will be used for
satellite communication applications; therefore, the serial Huffman decoder architecture

has been chosen for implementation.

7.0 (;0n¢lu_i0n

A digital video compression algorithm utilizing Huffman coding has been developed at
NASA Lewis Research Center to facilitate transmission of video data. In order to

implement a communications system utilizing coding of this type, however, it is necessary
to consider several issues such as data rate conversion (from variable to a fixed rate),

efficient data buffering, channel coding, recovery from communication errors, and decoder
synchronization. Each of these topics was addressed in detail in this report. Additionally,

a description of hardware developed to execute Huffman coding and serial transmission

was included in the report.

Development of decoder hardware is continuing. Two different Huffman decoder

approaches, parallel decode and serial decode, have been described and compared. The
best approach is dependent on the particular application. The parallel Huffman decoder

is memory-efficient and easier to implement than the serial approach, but it is not suitable
for applications with possible transmission channel errors. The serial Huffman decoder
approach is more complex, but can be used in applications with noisy channels because
transmission errors can be detected and masked. For evaluation of algorithm

performance, the compressed data will be transmitted over an experimental satellite link;
therefore, the serial Huffman decoder approach was chosen for implementation.

o

.

o

R_f_rences

Bizon, T. P.; Whyte, W. A.; Marcopoli, V. R.: Real-Time Demonstration Hardware
for Enhanced DPCM Video Compression Algorithm. NASA Technical Memorandum

105616, March 1992.

Shalkhauser, M. J.; Whyte, W. A.: Digital CODEC for Real-Time Processing of

Broadcast Quality Video Signals at 1.8 Bits/Pixel. NASA Technical Memorandum
102325, November 1989.

Adkins, K.; Shalkhauser, M. J.; Bibyk, S.: Digital Compression Algorithms for HDTV
Transmission. 1990 IEEE International Symposium on Circuits and Systems (ISCAS),

May 1990.



Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Publicreportingburdenforthiscollectiono1intorrnationis estimatedtoaverageI hourperresponse,includingthetimeforreviewinginstructions,searchingexistingdatasources,
gatheringandmamlainingthedataneeded,end completingandreviewingthecollectionof information.Sendcommentsregardingthisburdenestimateor anyotheraspectof this
collectionofinformalion,includingsuggestionsforreducingthisburden,toWashingtonHeadquartersServices,DirectorateforinformationOperationsandRepocts,1215Jefferson
DavisHighway,Suite1204,ArlingtOn_VA 222024302.andtotheOfficeof ManagementandBudget,Papen,./orkReductionProlect(0704-01B8),Washington,DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

March 1993 Technical Memorandum

4. TITLE AND ,_KIDTITLE

Real-Time Transmission of Digital Video Using Variable-Length Coding

& AUTHOR(S)

Thomas P. Bizon, Mary Jo Shalkhauser, and Wayne A, Whyte, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES|

National Aeronautics and Space Administration

Washington, D.C. 20546-0001

11. SUPPLEMENTARY NOTES

5. FUNDING NUMBERS

WU- 144-10-10

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-7730

10. SPONSORING_ON_ORING
AGENCY REPORTNUMBER

NASA TM- 106092

Prepared for the Data Compression Conference (DCC '93) sponsored by the Institute of Electrical and Electronics Engineers,

Snowbird, Utah, March 30--April 1, 1993. Responsible person, Thomas P. Bizon, (216) 433-8121.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 32

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Huffman coding is a variable-length lossless compression technique where data with a high probability of occurrence is

represented with short codewords, while "not-so-likely" data is assigned longer codewords. Compression is achieved

when the high-probability levels occur so frequently that their benefit outweighs any penalty paid when a less likely

input occurs. One instance where Huffman coding is extremely effective occurs when data is highly predictable and

differential coding can be applied (as with a digital video signal). For that reason, it is desirable to apply this

compression technique to digital video transmission; however, special care must be taken in order to implement a

communication protocol utilizing Huffman coding. This paper addresses several of the issues relating to the real-time

transmission of Huffman-coded digital video over a constant-rate serial channel. Topics discussed include data rate

conversion (from variable to a fixed rate), efficient data buffering, channel coding, recovery from communication errors,

decoder synchronization, and decoder architectures. A description of the hardware developed to execute Huffman

coding and serial transmission is also included. Although this paper focuses on matters relating to Huffman-coded digital

video, the techniques discussed can easily be generalized for a variety of applications which require transmission of

variable-length data.

14. SUBJECT TIERMS

Data compression; Variable-length coding; Huffman coding; Digital video

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

_J'SN7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITYCLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

A03
16. PRICE CODE

15
20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)
PrescribedbyANSI Std. 7_39-18
298-102


